54 research outputs found

    Technical note : New particle formation event forecasts during PEGASOS-Zeppelin Northern mission 2013 in Hyytiala, Finland

    Get PDF
    New particle formation (NPF) occurs frequently in the global atmosphere. During recent years, detailed laboratory experiments combined with intensive field observations in different locations have provided insights into the vapours responsible for the initial formation of particles and their subsequent growth. In this regard, the importance of sulfuric acid, stabilizing bases such as ammonia and amines as well as extremely low volatile organics, have been proposed. The instrumentation to observe freshly formed aerosol particles has developed to a stage where the instruments can be implemented as part of airborne platforms, such as aircrafts or a Zeppelin-type airship. Flight measurements are technically more demanding and require a greater detail of planning than field studies at the ground level. The high cost of flight hours, limited time available during a single research flight for the measurements, and different instrument payloads in Zeppelin airship for various flight missions demanded an analysis tool that would forecast whether or not there is a good chance for an NPF event. Here we present a methodology to forecast NPF event probability at the SMEAR II site in Hyytiala, Finland. This methodology was used to optimize flight hours during the PEGASOS (Pan-European Gas Aerosol Climate Interaction Study)-Zeppelin Northern mission in May-June 2013. Based on the existing knowledge, we derived a method for estimating the nucleation probability that utilizes forecast air mass trajectories, weather forecasts, and air quality model predictions. With the forecast tool we were able to predict the occurrence of NPF events for the next day with more than 90% success rate (10 out of 11 NPF event days correctly predicted). To our knowledge, no similar forecasts of NPF occurrence have been developed for other sites. This method of forecasting NPF occurrence could be applied also at other locations, provided that long-term observations of conditions favouring particle formation are available.Peer reviewe

    Growth rates of nucleation mode particles in HyytiĂ€lĂ€ during 2003−2009: variation with particle size, season, data analysis method and ambient conditions

    Get PDF
    The condensational growth rate of aerosol particles formed in atmospheric new particle formation events is one of the most important factors influencing the lifetime of these particles and their ability to become climatically relevant. Diameter growth rates (GR) of nucleation mode particles were studied based on almost 7 yr of data measured during the years 2003–2009 at a boreal forest measurement station SMEAR II in HyytiĂ€lĂ€, Finland. The particle growth rates were estimated using particle size distributions measured with a Differential Mobility Particle Sizer (DMPS), a Balanced Scanning Mobility Analyzer (BSMA) and an Air Ion Spectrometer (AIS). Two GR analysis methods were tested. The particle growth rates were also compared to an extensive set of ambient meteorological parameters and trace gas concentrations to investigate the processes/constituents limiting the aerosol growth. The median growth rates of particles in the nucleation mode size ranges with diameters of 1.5–3 nm, 3–7 nm and 7–20 nm were 1.9 nm h<sup>−1</sup>, 3.8 nm h<sup>−1</sup>, and 4.3 nm h<sup>−1</sup>, respectively. The median relative uncertainties in the growth rates due to the size distribution instrumentation in these size ranges were 25%, 19%, and 8%, respectively. For the smallest particles (1.5–3 nm) the AIS data yielded on average higher growth rate values than the BSMA data, and higher growth rates were obtained from positively charged size distributions as compared with negatively charged particles. For particles larger than 3 nm in diameter no such systematic differences were found. For these particles the uncertainty in the growth rate related to the analysis method, with relative uncertainty of 16%, was similar to that related to the instruments. The growth rates of 7–20 nm particles showed positive correlation with monoterpene concentrations and their oxidation rate by ozone. The oxidation rate by OH did not show a connection with GR. Our results indicate that the growth of nucleation mode particles in HyytiĂ€lĂ€ is mainly limited by the concentrations of organic precursors

    Intercomparison of air ion spectrometers: An evaluation of results in varying conditions

    Get PDF
    We evaluated 11 air ion spectrometers from Airel Ltd. after they had spent one year in field measurements as a part of the EUCAARI project: 5 Air Ion Spectrometers (AIS), 5 Neutral cluster and Air Ion Spectrometers (NAIS) and one Airborne NAIS (ANAIS). This is the first time that an ANAIS is evaluated and compared so extensively. The ion spectrometers' mobility and concentration accuracy was evaluated. Their measurements of ambient air were compared between themselves and to reference instruments: a Differential Mobility Particle Sizer (DMPS), a Balanced Scanning Mobility Analyzer (BSMA), and an Ion-DMPS. We report on the simultaneous measurement of a new particle formation (NPF) event by all 11 instruments and the 3 reference instruments. To our knowledge, it is the first time that the size distribution of ions and particles is measured by so many ion spectrometers during a NPF event. The new particle formation rates (~0.2 cm−3 s−1 for ions and ~2 cm−3 s−1 for particles) and growth rates (~25 nm h−1 in the 3–7 nm size range) were calculated for all the instruments. The NAISs and the ANAIS gave higher concentrations and formation rates than the AISs. For example, the AISs agreed with the BSMA within 11 % and 28 % for negative and positive ion concentration respectively, whereas the NAISs agreed within 23 % and 29 %. Finally, based on the results presented here, we give guidelines for data evaluation, when data from different individual ion spectrometers are compared

    Factors controlling the evaporation of secondary organic aerosol from alpha-pinene ozonolysis

    Get PDF
    Secondary organic aerosols (SOA) forms a major fraction of organic aerosols in the atmosphere. Knowledge of SOA properties that affect their dynamics in the atmosphere is needed for improving climate models. By combining experimental and modeling techniques, we investigated the factors controlling SOA evaporation under different humidity conditions. Our experiments support the conclusion of particle phase diffusivity limiting the evaporation under dry conditions. Viscosity of particles at dry conditions was estimated to increase several orders of magnitude during evaporation, up to 10(9)Pas. However, at atmospherically relevant relative humidity and time scales, our results show that diffusion limitations may have a minor effect on evaporation of the studied -pinene SOA particles. Based on previous studies and our model simulations, we suggest that, in warm environments dominated by biogenic emissions, the major uncertainty in models describing the SOA particle evaporation is related to the volatility of SOA constituents.Peer reviewe

    Insights into the O : C-dependent mechanisms controlling the evaporation of α-pinene secondary organic aerosol particles

    Get PDF
    The volatility of oxidation products of volatile organic compounds (VOCs) in the atmosphere is a key factor to determine if they partition into the particle phase contributing to secondary organic aerosol (SOA) mass. Thus, linking volatility and measured particle composition will provide insights into SOA formation and its fate in the atmosphere. We produced α-pinene SOA with three different oxidation levels (characterized by average oxygen-to-carbon ratio; O:C‟=0.53, 0.69, and 0.96) in an oxidation flow reactor. We investigated the particle volatility by isothermal evaporation in clean air as a function of relative humidity (RH &lt;2&thinsp;%, 40&thinsp;%, and 80&thinsp;%) and used a filter-based thermal desorption method to gain volatility and chemical composition information. We observed reduced particle evaporation for particles with increasing O:C‟ ratio, indicating that particles become more resilient to evaporation with oxidative aging. Particle evaporation was increased in the presence of water vapour and presumably particulate water; at the same time the resistance of the residual particles to thermal desorption was increased as well. For SOA with O:C‟=0.96, the unexpectedly large increase in mean thermal desorption temperature and changes in the thermogram shapes under wet conditions (80&thinsp;% RH) were an indication of aqueous phase chemistry. For the lower O:C‟ cases, some water-induced composition changes were observed. However, the enhanced evaporation under wet conditions could be explained by the reduction in particle viscosity from the semi-solid to liquid-like range, and the observed higher desorption temperature of the residual particles is a direct consequence of the increased removal of high-volatility and the continued presence of low-volatility compounds.</p

    Combined effects of boundary layer dynamics and atmospheric chemistry on aerosol composition during new particle formation periods

    Get PDF
    Characterizing aerosol chemical composition in response to meteorological changes and atmospheric chemistry is important to gain insights into new particle formation mechanisms. A BAECC (Biogenic Aerosols – Effects on Clouds and Climate) campaign was conducted during the spring 2014 at the SMEAR II station (Station for Measuring Forest Ecosystem–Aerosol Relations) in Finland. The particles were characterized by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). A PBL (planetary boundary layer) dilution model was developed to assist interpreting the measurement results. Right before nucleation events, the mass concentrations of organic and sulfate aerosol species were both decreased rapidly along with the growth of PBL heights. However, the mass fraction of sulfate aerosol of the total aerosol mass was increased, in contrast to a decrease for the organic mass fraction. Meanwhile, an increase in LVOOA (low-volatility oxygenated organic aerosol) mass fraction of the total organic mass was observed, in distinct comparison to a reduction of SVOOA (semi-volatile OOA) mass fraction. Our results demonstrate that, at the beginning of nucleation events, the observed sulfate aerosol mass was mainly driven by vertical turbulent mixing of sulfate-rich aerosols between the residual layer and the newly formed boundary layer, while the condensation of sulfuric acid (SA) played a minor role in interpreting the measured sulfate mass concentration. For the measured organic aerosols, their temporal profiles were mainly driven by dilution from PBL development, organic aerosol mixing in different boundary layers and/or partitioning of organic vapors, but accurate measurements of organic vapor concentrations and characterization on the spatial aerosol chemical composition are required. In general, the observed aerosol particles by AMS are subjected to joint effects of PBL dilution, atmospheric chemistry and aerosol mixing in different boundary layers. During aerosol growth periods in the nighttime, the mass concentrations of organic aerosols and organic nitrate aerosols were both increased. The increase in SVOOA mass correlated well with the calculated increase in condensed HOMs' (highly oxygenated organic molecules) mass. To our knowledge, our results are the first atmospheric observations showing a connection between increase in SVOOA and condensed HOMs during the nighttime.</p
    • 

    corecore